skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kong, Zhifeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large pre-trained generative models are known to occasionally output undesirable samples, which undermines their trustworthiness. The common way to mitigate this is to re-train them differently from scratch using different data or different regularization -- which uses a lot of computational resources and does not always fully address the problem. In this work, we take a different, more compute-friendly approach and investigate how to post-edit a model after training so that it ''redacts'', or refrains from outputting certain kinds of samples. We show that redaction is a fundamentally different task from data deletion, and data deletion may not always lead to redaction. We then consider Generative Adversarial Networks (GANs), and provide three different algorithms for data redaction that differ on how the samples to be redacted are described. Extensive evaluations on real-world image datasets show that our algorithms out-perform data deletion baselines, and are capable of redacting data while retaining high generation quality at a fraction of the cost of full re-training. 
    more » « less
  2. Instance-based interpretation methods have been widely studied for supervised learning methods as they help explain how black box neural networks predict. However, instance-based interpretations remain ill-understood in the context of unsupervised learning. In this paper, we investigate influence functions [Koh and Liang, 2017], a popular instance-based interpretation method, for a class of deep generative models called variational auto-encoders (VAE). We formally frame the counter-factual question answered by influence functions in this setting, and through theoretical analysis, examine what they reveal about the impact of training samples on classical unsupervised learning methods. We then introduce VAE- TracIn, a computationally efficient and theoretically sound solution based on Pruthi et al. [2020], for VAEs. Finally, we evaluate VAE-TracIn on several real world datasets with extensive quantitative and qualitative analysis. 
    more » « less